CNN-Intro.tex 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120
  1. \documentclass{beamer}
  2. \usetheme{metropolis}
  3. \usepackage{hyperref}
  4. \usepackage[utf8]{inputenc} % this is needed for german umlauts
  5. \usepackage[english]{babel} % this is needed for german umlauts
  6. \usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
  7. \usepackage{tikz}
  8. \usetikzlibrary{arrows.meta}
  9. \usetikzlibrary{decorations.pathreplacing}
  10. \usetikzlibrary{positioning}
  11. \usetikzlibrary{decorations.text}
  12. \usetikzlibrary{decorations.pathmorphing}
  13. \usetikzlibrary{shapes.multipart, calc}
  14. \begin{document}
  15. \title{Convolutional Neural Networks (CNNs)}
  16. \subtitle{Theory and Applications}
  17. \author{Martin Thoma}
  18. \date{22. February 2019}
  19. \subject{Machine Learning, AI, Neural Networks, Convolutional Neural Networks}
  20. \frame{\titlepage}
  21. % \section{Neural Network Basics}
  22. % \subsection{}
  23. \begin{frame}{Artificial Neuron (Perceptron)}
  24. $$f: \mathbb{R}^n \rightarrow \mathbb{R}$$
  25. \begin{figure}[ht]
  26. \centering
  27. \includegraphics[width=0.8\paperwidth, height=0.7\paperheight, keepaspectratio]{graphics/artificial-neuron.pdf}
  28. \end{figure}
  29. % $$f(x) = ax^2 + bx + c \text{ with } f(0) = 3, f(1) = 2, f(-1) = 6$$
  30. % \begin{align*}
  31. % \onslide<2->{f(0) &= a \cdot 0^2 + b \cdot 0 + c = 3} &\onslide<3->{\Rightarrow c &= 3\\}
  32. % \onslide<4->{f(1) &= a \cdot 1^2 + b \cdot 1 + 3 = 2} &\onslide<5->{\Rightarrow a &= -1-b\\}
  33. % \onslide<6->{f(-1) &= a \cdot {(-1)}^2 - b + 3 = 6\\}
  34. % \onslide<7->{\Leftrightarrow 3&=a - b\\}
  35. % \onslide<8->{\Leftrightarrow 3&= (-1-b) - b\\}
  36. % \onslide<9->{\Leftrightarrow b&= -2\\}
  37. % \onslide<10>{\Rightarrow \quad f(x) &= x^2 -2 x + 3\\}
  38. % \end{align*}
  39. % \only<1>{$$f: \mathbb{R}^n \rightarrow \mathbb{R}^m$$}
  40. % \only<2>{$$f: \mathbb{R}^2 \rightarrow \mathbb{R}$$
  41. % # 2x - 1
  42. % # (x-1)^2 + 1
  43. % Examples:
  44. % \begin{itemize}
  45. % \item $1 \rightarrow 1$: $f(x) = x$
  46. % \item $2 \rightarrow 3$: $f(x) = $
  47. % % \item $3 \rightarrow 3$
  48. % \end{itemize}
  49. % }
  50. \end{frame}
  51. \begin{frame}{Multi-Layer Perceptron (MLP)}
  52. $$f: \mathbb{R}^n \rightarrow \mathbb{R}^m$$
  53. \begin{figure}[ht]
  54. \centering
  55. \includegraphics[width=0.8\paperwidth, height=0.7\paperheight, keepaspectratio]{graphics/perceptron-notation.pdf}
  56. \end{figure}
  57. \end{frame}
  58. \begin{frame}{}
  59. \begin{itemize}[<+->]
  60. \item Predict housing prices: (bed rooms, size, age) $\rightarrow$ Price
  61. \item Product categorization: (weight, volume, price) $\rightarrow$ \{shoe, handbag, shirt\}
  62. \item Image classification: List of pixel colors $\rightarrow$ \{cat, dog\}
  63. \end{itemize}
  64. \end{frame}
  65. \begin{frame}{}
  66. \begin{center}
  67. \Huge Data
  68. \end{center}
  69. \end{frame}
  70. \begin{frame}{Necessary Data}
  71. \begin{itemize}
  72. \item $f(x) = w_0$
  73. \item $f(x) = w_1 \cdot x + w_0$
  74. \item $f(x) = w_2^2 \cdot x^2 + w_1^2 \cdot x + w_0$
  75. \item sin, cos, tan, \dots
  76. \end{itemize}
  77. \end{frame}
  78. \begin{frame}{Convolution}
  79. \begin{figure}[ht]
  80. \centering
  81. \includegraphics[width=0.8\paperwidth]{graphics/convolution-linear.pdf}
  82. \end{figure}
  83. \end{frame}
  84. \begin{frame}{Convolutional Layer}
  85. \begin{figure}[ht]
  86. \centering
  87. \input{graphics/convolution-layer}
  88. \end{figure}
  89. \end{frame}
  90. \begin{frame}{Max Pooling}
  91. \begin{figure}[ht]
  92. \centering
  93. \includegraphics[width=0.8\paperwidth]{graphics/max-pooling.pdf}
  94. \end{figure}
  95. \end{frame}
  96. \section{Applications}
  97. \begin{frame}{Symbol recognizer}
  98. \begin{center}
  99. \href{http://write-math.com}{write-math.com}
  100. \end{center}
  101. \end{frame}
  102. \begin{frame}{Symbol recognizer}
  103. GANs
  104. \end{frame}
  105. \end{document}