This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors. To propose a model for inclusion, please submit a pull request.

Neal Wu 2af8c3d2b6 Switch to the new FileWriter API vor 9 Jahren
.github dc7791d01c Create ISSUE_TEMPLATE.md (#124) vor 9 Jahren
autoencoder 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script vor 9 Jahren
compression 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script vor 9 Jahren
differential_privacy 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script vor 9 Jahren
im2txt 00ffa603f2 Manually fixed many occurrences of tf.concat vor 9 Jahren
inception 2af8c3d2b6 Switch to the new FileWriter API vor 9 Jahren
learning_to_remember_rare_events 6a9c0da962 add learning to remember rare events vor 9 Jahren
lm_1b fdc4ce37a4 Fix README vor 9 Jahren
namignizer 74ae822126 Remove leading space from namignizer code vor 9 Jahren
neural_gpu 5c53534305 Manually fixed many occurrences of tf.split vor 9 Jahren
neural_programmer 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script vor 9 Jahren
next_frame_prediction 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script vor 9 Jahren
real_nvp 5c53534305 Manually fixed many occurrences of tf.split vor 9 Jahren
resnet 64254ad355 Modify the README to reflect changes vor 9 Jahren
slim 546fd48ecb Additional upgrades to 1.0 and code fixes vor 9 Jahren
street b41ff7f1bf Remove name arguments from tf.summary.scalar vor 9 Jahren
swivel 00ffa603f2 Manually fixed many occurrences of tf.concat vor 9 Jahren
syntaxnet 00ffa603f2 Manually fixed many occurrences of tf.concat vor 9 Jahren
textsum 546fd48ecb Additional upgrades to 1.0 and code fixes vor 9 Jahren
transformer 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script vor 9 Jahren
tutorials 0b2c5ba296 Merge pull request #1112 from zym1010/issue1083 vor 9 Jahren
video_prediction 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script vor 9 Jahren
.gitignore 3e6caf5ff0 Add a .gitignore file. (#164) vor 9 Jahren
.gitmodules 32ab5a58dd Adding SyntaxNet to tensorflow/models (#63) vor 9 Jahren
AUTHORS 41c52d60fe Spatial Transformer model vor 10 Jahren
CONTRIBUTING.md d84df16bc3 fixed contribution guidelines vor 10 Jahren
LICENSE 7c41e653dc Update LICENSE vor 10 Jahren
README.md 727418e4ae One more tiny change vor 9 Jahren
WORKSPACE ac0829fa2b Consolidate privacy/ and differential_privacy/. vor 9 Jahren

README.md

TensorFlow Models

This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors.

To propose a model for inclusion please submit a pull request.

Models

  • autoencoder: various autoencoders.
  • compression: compressing and decompressing images using a pre-trained Residual GRU network.
  • differential_privacy: privacy-preserving student models from multiple teachers.
  • im2txt: image-to-text neural network for image captioning.
  • inception: deep convolutional networks for computer vision.
  • learning_to_remember_rare_events: a large-scale life-long memory module for use in deep learning.
  • lm_1b: language modeling on the one billion word benchmark.
  • namignizer: recognize and generate names.
  • neural_gpu: highly parallel neural computer.
  • neural_programmer: neural network augmented with logic and mathematic operations.
  • next_frame_prediction: probabilistic future frame synthesis via cross convolutional networks.
  • real_nvp: density estimation using real-valued non-volume preserving (real NVP) transformations.
  • resnet: deep and wide residual networks.
  • slim: image classification models in TF-Slim.
  • street: identify the name of a street (in France) from an image using a Deep RNN.
  • swivel: the Swivel algorithm for generating word embeddings.
  • syntaxnet: neural models of natural language syntax.
  • textsum: sequence-to-sequence with attention model for text summarization.
  • transformer: spatial transformer network, which allows the spatial manipulation of data within the network.
  • tutorials: models described in the TensorFlow tutorials.
  • video_prediction: predicting future video frames with neural advection.