This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors. To propose a model for inclusion, please submit a pull request.

Neal Wu 2af8c3d2b6 Switch to the new FileWriter API hace 9 años
.github dc7791d01c Create ISSUE_TEMPLATE.md (#124) hace 9 años
autoencoder 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script hace 9 años
compression 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script hace 9 años
differential_privacy 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script hace 9 años
im2txt 00ffa603f2 Manually fixed many occurrences of tf.concat hace 9 años
inception 2af8c3d2b6 Switch to the new FileWriter API hace 9 años
learning_to_remember_rare_events 6a9c0da962 add learning to remember rare events hace 9 años
lm_1b fdc4ce37a4 Fix README hace 9 años
namignizer 74ae822126 Remove leading space from namignizer code hace 9 años
neural_gpu 5c53534305 Manually fixed many occurrences of tf.split hace 9 años
neural_programmer 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script hace 9 años
next_frame_prediction 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script hace 9 años
real_nvp 5c53534305 Manually fixed many occurrences of tf.split hace 9 años
resnet 64254ad355 Modify the README to reflect changes hace 9 años
slim 546fd48ecb Additional upgrades to 1.0 and code fixes hace 9 años
street b41ff7f1bf Remove name arguments from tf.summary.scalar hace 9 años
swivel 00ffa603f2 Manually fixed many occurrences of tf.concat hace 9 años
syntaxnet 00ffa603f2 Manually fixed many occurrences of tf.concat hace 9 años
textsum 546fd48ecb Additional upgrades to 1.0 and code fixes hace 9 años
transformer 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script hace 9 años
tutorials 0b2c5ba296 Merge pull request #1112 from zym1010/issue1083 hace 9 años
video_prediction 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script hace 9 años
.gitignore 3e6caf5ff0 Add a .gitignore file. (#164) hace 9 años
.gitmodules 32ab5a58dd Adding SyntaxNet to tensorflow/models (#63) hace 9 años
AUTHORS 41c52d60fe Spatial Transformer model hace 10 años
CONTRIBUTING.md d84df16bc3 fixed contribution guidelines hace 10 años
LICENSE 7c41e653dc Update LICENSE hace 10 años
README.md 727418e4ae One more tiny change hace 9 años
WORKSPACE ac0829fa2b Consolidate privacy/ and differential_privacy/. hace 9 años

README.md

TensorFlow Models

This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors.

To propose a model for inclusion please submit a pull request.

Models

  • autoencoder: various autoencoders.
  • compression: compressing and decompressing images using a pre-trained Residual GRU network.
  • differential_privacy: privacy-preserving student models from multiple teachers.
  • im2txt: image-to-text neural network for image captioning.
  • inception: deep convolutional networks for computer vision.
  • learning_to_remember_rare_events: a large-scale life-long memory module for use in deep learning.
  • lm_1b: language modeling on the one billion word benchmark.
  • namignizer: recognize and generate names.
  • neural_gpu: highly parallel neural computer.
  • neural_programmer: neural network augmented with logic and mathematic operations.
  • next_frame_prediction: probabilistic future frame synthesis via cross convolutional networks.
  • real_nvp: density estimation using real-valued non-volume preserving (real NVP) transformations.
  • resnet: deep and wide residual networks.
  • slim: image classification models in TF-Slim.
  • street: identify the name of a street (in France) from an image using a Deep RNN.
  • swivel: the Swivel algorithm for generating word embeddings.
  • syntaxnet: neural models of natural language syntax.
  • textsum: sequence-to-sequence with attention model for text summarization.
  • transformer: spatial transformer network, which allows the spatial manipulation of data within the network.
  • tutorials: models described in the TensorFlow tutorials.
  • video_prediction: predicting future video frames with neural advection.